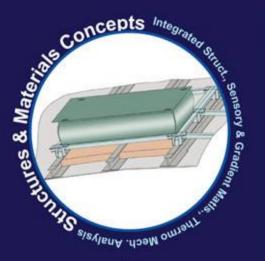


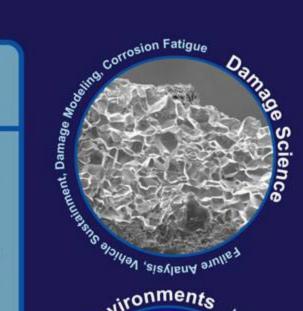
Metals & Thermal Structures Branch NASA Langley Research Center


Electron Beam Freeform Fabrication
Technology Development for
Aerospace Applications

Karen M. Taminger

Airbus Materials & Structures Workshop

——— April 6-7, 2006 ———



Synthesis & Development All Skilled Street of Processin Page 1

Sledam ovidevonni

Metals and Thermal Structures Branch

... an integrated structures and materials research organization offering comprehensive conceptual design, analysis and experimentation focused on aerospace applications. Our capabilities include specialized expertise and facilities for processing, characterization and structural testing in extreme environments.

POC: H. Kevin Rivers 757.864.5428 H.K.Rivers@nasa.gov

MTSB Facilities

- Light Alloy Laboratory
- Environmental Fatigue Laboratory
- Biaxial Test Facility
- Advanced Metals Processing Equipment
- Electron Beam Freeform Fabrication Facility
- Metals Cleaning Laboratory
- Hypersonic Materials Environmental Test (HYMETS) Facility
- Thermal Structures Laboratory

NASA-LaRC Light Alloy Research Facilities

RF Plasma Spray Unit

Metals Processing

RF Plasma Spraying

MMC Lay-up

Cold Isostatic Pressing

Vacuum Hot Pressing

Vacuum Induction Melting

Arc Melting

Heat Treatment

Air up to 3000°F Vacuum up to 2250°F

Surface Preparation

Resistance Welding

E-Beam Free-Form Fab

Sol Gel Coatings

100 kip Cryo. Test Stand

Mechanical Testing

Tensile/Compression

Loads up to 100,000 lbs -451°F to 2500°F

Fatigue and Fracture Tests

Creep

Biaxial Tension

Corrosion

Hypersonic Flow Exposure

SEM loading stage

Loads up to 1000 lbs
Temperatures up to 1800°F

Philips 200kV TEM

Metallurgical Analysis

Optical Metallography

X-ray Diffraction

Residual Stress

Texture (ODF)

Powder Patterns

SEM

Variable Pressure/Environmental

EDS and Microprobe

Microtexture

TEM/STEM

EDS

EELS/Imaging Filter

Thermal Analysis

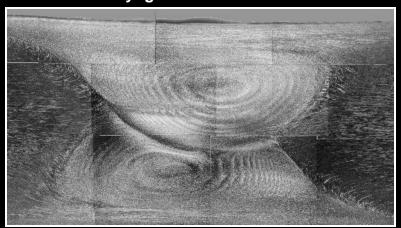
DSC (-320°F to 1200°F)

DTA & TGA (up to 3000°F)

Advanced Manufacturing Methods for Metallic Structure

Processing Improvements

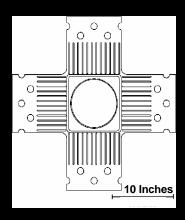
- Demonstrated advanced manufacturing methods to produce metallic structures with increased reliability and safety margins (ALS, NLS programs)
 - Eliminated longitudinal welds via shear forming of single piece 2219 barrel section
 - Integral circumferential stiffeners
- Ongoing collaborative research in friction stir welding (FSW)
 - In-house and SAA funded testing and characterization
 - Industry advisory board chair of NSF Center for Friction Stir Processing
- Combined fabrication methods demonstrated in sub-scale cryogenic tank (CTTP program)
 - Spin forming, roll forging, FSW
 - LaRC / MSFC / Lockheed-Martin collaborative program


Cryogenic Tank Fabrication Technology Demonstrator Spun Formed Dome Roll Forged Adapter Ring

Shear Formed 2219 Al Tank Barrel

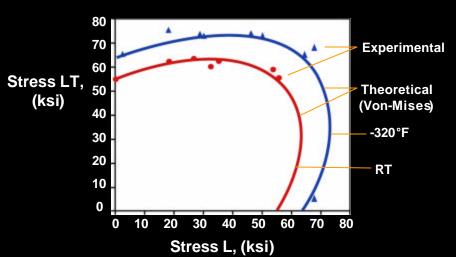
- 10' Dia. X 12' Long X 0.25"
 Thick
- · Single piece barrel section
- Employed production tooling used for fabrication of SRB D6AC steel casings

Dual Pass Friction Stir Weld of Al-Li 2195 for Cryogenic Tank Dome Blanks


Biaxial Testing Capability at LaRC

Biaxial Test Stand

Biaxial Test Specimen

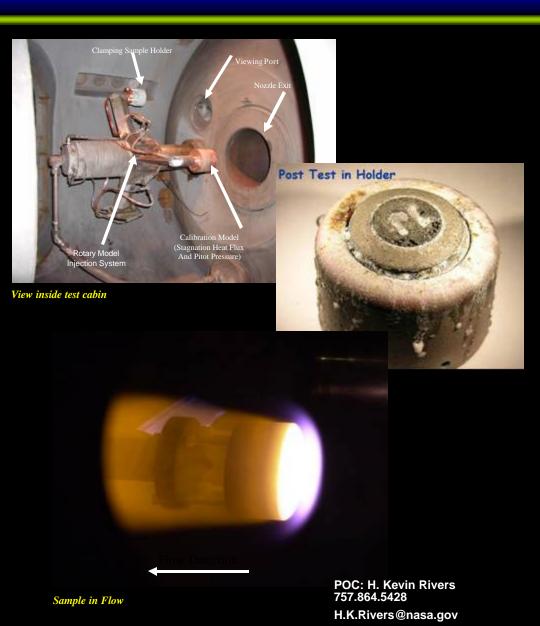


- Biaxial specimen designed at LaRC
- Maximizes region of uniform biaxial stress
- Validated finite element analysis

Biaxial Testing of Al & Al-Li Alloys

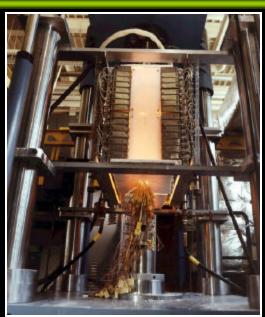
- Biaxial yield Locus developed for 2219 & Al-Li 2195
- Yield Locus of 2219 instrumental in redesign of STS external cryogenic tank dome.
- Biaxial tests conducted on conventionally welded and friction stir welded panels.

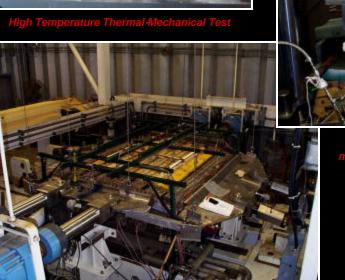
Yield Locus of 2219-T87 at RT and -320°F



LaRC Hypersonic Materials Environmental Test (HYMETS) Facility

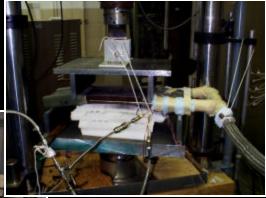
- HyMETS is a small arcjet test facility used to evaluate materials for hypersonic application
 - 1" dia. specimen
 - pressure up to 20 torr
 - enthalpy up to 5500 Btu/lb
 - Cold wall heating rates up to 270 Btu/ft²sec
 - •Air Mass flow to 10⁻² lb/sec


 HyMETS has been used extensively to evaluate materials for use as Shuttle Tile repairs



LaRC Thermal Structures Research Facilities

- Focus: Characterize the behavior of advanced thermal structures subject to combined thermal and mechanical loads
- Test systems include seven servo hydraulic test machines ranging from 22k to 500k lbs
- Thermal loads can be applied from -420° F to 2500° F
- Specimens can be tested up to 4 ft x 8 ft
- Custom loading and heating systems are often designed and built for custom tests

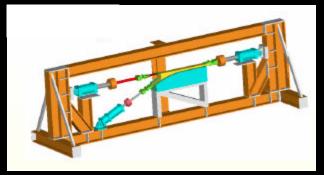


TPS/tank Integration Tests in the Cryogenic Pressure Box

Mechanical Tests of a C/SiC Contro Surface Sub-element

LH2 Permeation measurement of a

POC: H. Kevin Rivers 757.864.5428 H.K.Rivers@nasa.gov


Thermal-Structural Tests of Full-Scale "Y" Joints

- Performed thermal-structural tests of composite cryogenic tank/intertank "Y" Joint structural interface
- Tests performed to -423 °F
- Assessed failure modes and failure loads

Thermal-Structural Test of a Full-scale Cryotank "Y" joint

CAD model of test apparatus indicating complex loading of test article

Y-joint test article

Electron Beam Freeform Fabrication (EBF³) Process Developed at NASA Langley

Basics

- Layer-additive process to build parts using CNC techniques
- Electron beam melts pool on substrate, metal wire added to build up part
- Material properties similar to those of annealed wrought products
- ~100% dense, structural metallic parts produced directly from CAD file without molds, tooling, or machining
- Secondary processing also possible with reconfigured electron beam
- LaRC has ground-based and portable systems

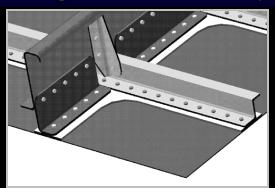
Benefits

- Near-net shape parts minimize scrap & reduces part count
- Efficient design improves weight, assembly time, performance
- Intricate, complex geometries, functionally graded parts & structures
- High energy efficiency and feedstock usage efficiency
- Cross-cutting technology with numerous potential applications

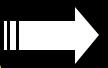
Freeform Fabrication Provides Benefits for Integrally Fabricated Structures

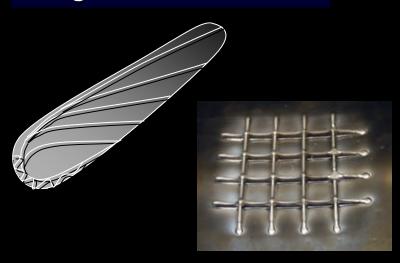
Integrally Machined

Additive Manufactured



- Add features onto simplified casting or forging instead of machining down from oversized billet to leave stiffeners, flanges, bosses, etc.
- Allows design changes later in design cycle
- Significantly reduces starting billet sizes, including costs and lead times associated with handling oversized
- Decreases buy-to-fly ratio and reduces scrap production and handling


Freeform Fabrication Enables Paradigm Shift to Novel Structural Designs

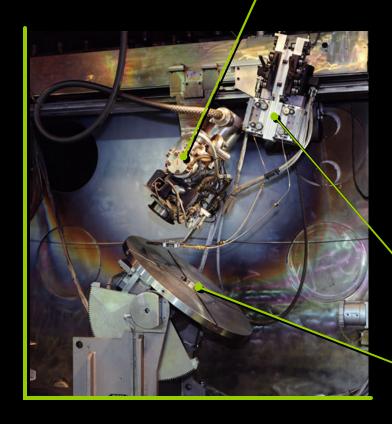

Designed for Assembly

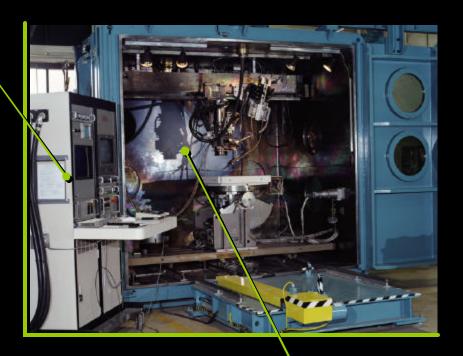
Assembled from many discrete components

Designed for Performance

- Freeform fabrication of unitized structure allows use of functionally graded, locally controlled features
- New structural design & analysis tools allow concept development of structures with contoured stiffeners that follow load paths
- New manufacturing process coupled with novel structural analysis and design enables performance enhancements and reduced cost, weight

Comparison of Laser and Electron Beam Deposition Techniques


Laser (Nd:YAG or CO ₂)		Electron Beam
5-10%	Wall plug efficiency	95%
Most polymers, ceramics, metals	Materials processed	Electrically conductive materials
Continuous or gated pulsed	Beam control	Continuous or pulsed, programmable raster
Lenses & mirrors or fiber optics (Nd:YAG)	Beam delivery	Magnetically steered
Any (inert gas typical)	Process environment	10 ⁻⁵ torr งออนนเก
Powder	Feedstock form	Wire
5-85%	Feedstock efficiency	100%
0.2 to 4 kg/hr	Maximum deposition rate	> 13.5 kg/nr


Ground-Based EBF³ System at NASA Langley

Computer Control System

42 kW EB Gun —

Vacuum Chamber

Dual Wire Feeders

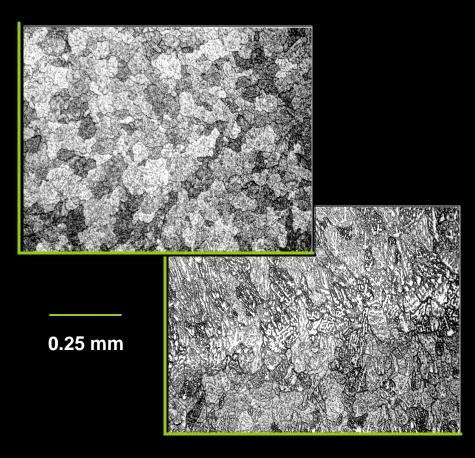
Tilt/Rotate Positioner

EBF³ Build Demonstration Video

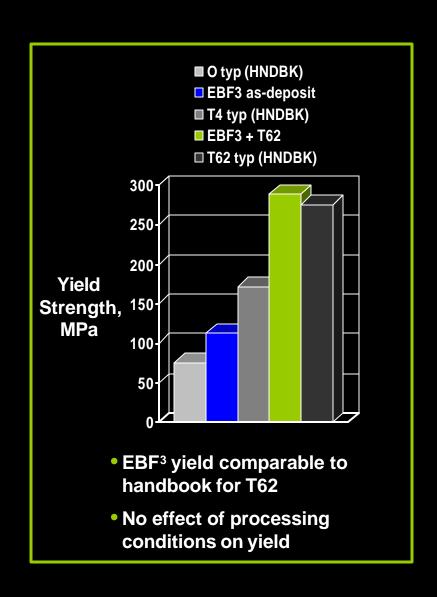
Portable EBF³ System at NASA Langley

Control cabinets & power supplies

- 3 kW electron beam gun

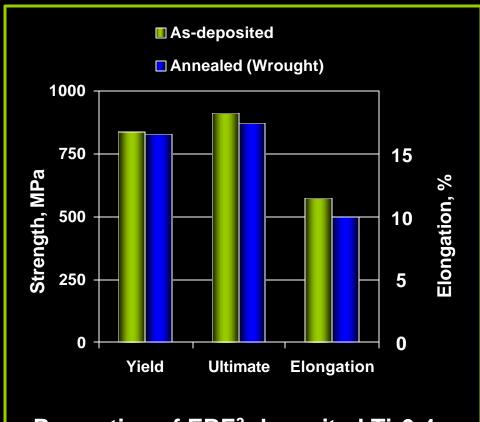


1-m cube vacuum chamber

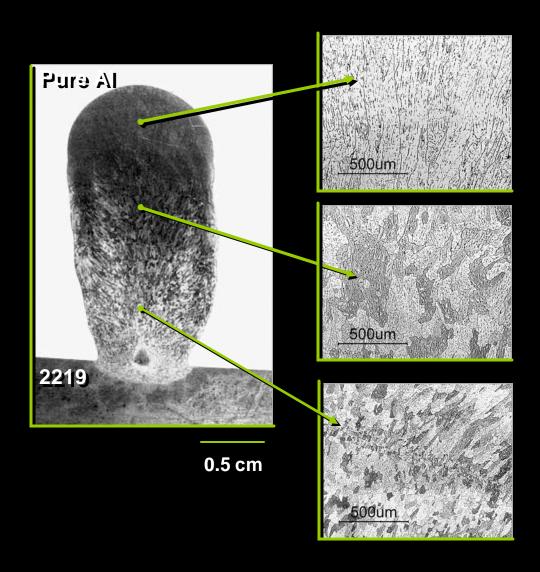

Vacuum pumps

2219 Al Produced by EBF³

Equiaxed or dendritic grain structure forms depending on processing conditions



Ti-6Al-4V Processed by EBF³


- Large columnar grains grow epitaxially from substrate
- Forms typical alpha-beta lath structure within grains

Properties of EBF³ deposited Ti-6-4 equivalent to annealed wrought product

Functionally Graded Aluminum Produced by EBF3

- Transition from 100% 2219 Al to 100% pure Al
- Material combination enables study of mixing and dilution
- Grain morphology varies with composition
- Elemental segregation examined

Summary: Electron Beam Freeform Fabrication

- NASA Langley has developed the EBF³ process and currently has two EBF³ systems in-house
- EBF³ process offers potential cost reduction and fabrication of complex unitized structures out of metals
- EBF³ has been successfully demonstrated on Al, Al-Li, Ti, and Ni alloys to date

Opportunities to collaborate will be dependent upon protection of restricted information